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Using results from the theory of dynamical systems, we derive a general expression for the classical average
scattering dwell timektl. Remarkably,ktl depends only on a ratio of phase space volumes. We further show
that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy
average of the quantum Wigner time delay.
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I. INTRODUCTION

The study of the time a quantum collision process takes to
occur is one of the most interesting chapters in scattering
theory. This problem turns out to be subtle and fascinating
due to the lack of a Hermitian operator to measure the time
as a quantum observable. Hence, one inevitably has to rely
on auxiliary constructions to quantify the time spent by a
scattering process. To that end several ingenious strategies
have been proposed over the past 50 years[1]. In a pioneer-
ing work, Eisenbud and Wigner[2] proposed measuring the
scattering delay time by recording the peak position of wave
packets scattered in one dimension. This simple construction,
which just invokes the concept of group velocity, already
captures the deep connection between the energy variations
of the scattering phase shift and the delay time. In 1960,
Smith [3] put forward an alternative scheme, applicable to
stationary scattering processes, where the scattering dwell
time is associated with the ratio between the probability of
finding the particle inside the scattering region and the flux
through its surface. This approach has the advantage of
eliminating the necessity of wave packets and can be easily
generalized to multichannel scattering. As a result, the dwell
time tWsEd is expressed as

tWsEd = −
i"

N
o

a,b=1

N

Sab
* ]Sba

]E
, s1d

where the scattering matrixS, which encodes all accessible
information about the scattering process, is taken at the en-
ergy E. The sums in Eq.(1) run over allN open asymptotic
scattering channels. The timetWsEd is usually called the
Wigner time delay.

Is tWsEd in correspondence with the classical dwell time
for general scattering systems? To answer this question we
approach the problem from the classical side. We use the
theory of dynamical systems to obtain a remarkably simple
and general expression for the classical dwell time, revealing

its geometric nature. Comparing this result with the semi-
classical limit for the energy-averaged quantum dwell time,
we find that the quantum-classical correspondence does not
hold in general.

The present analysis does not contradict a previous study
of ours [4]. There we followed a different path, applicable
only to chaotic systems, and concluded that the classical-
quantum correspondence for the dwell time holds. Here, ap-
proaching the problem in a way that is insensitive to the
details of the dynamics, we vastly expand[4] and show that
the correspondence fails in the more general case of systems
with mixed phase space.

The paper is organized as follows. In Sec. II we derive the
central result of this paper, namely, a general expression for
the classical average time delay in terms of the system phase
space volume. Key to our analysis is the formulation of the
scattering process as the first return of a measure-preserving
map, allowing us to benefit from well-known results of er-
godic theory. In Sec. III we discuss the semiclassical limit of
the energy-averaged Wigner time delay. We conclude by pre-
senting, in Sec. IV, a comparison between the classical and
quantum dwell times. We show that, in general, these two
quantities do not coincide.

II. THE CLASSICAL DWELL TIME

Poincaré sections are extremely useful tools for the analy-
sis of phase space structures in bounded low-dimensional
Hamiltonian systems: These surfaces of section allow us to
reduce the continuous time evolution of dynamical systems
to discrete mappings, much simpler to work with.

Surfaces of section are essential for the proper definition
of a scattering problem. Consider the scattering of a particle
by a potential. The description of the scattering process re-
quires two control surfaces for detecting the state of the par-
ticle before and after the scattering event. The description of
all possible scattering processes demands the control sur-
faces to be chosen so as to enclose the scatterer completely.
In this case we can consider just one surface for registering
the states of both incoming and outgoing particles.

Let us illustrate these concepts by discussing a generic
scattering process in three dimensions. We choose a spherical
control surface enclosing the region where the potential is
non-negligible. A point on the associated Poincaré surfaceS
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has coordinatessq ,pid, whereq represents a position on the
sphere andpi the conjugate(angular) momentum. An incom-
ing state is completely specified by giving its coordinates on
S together with the condition that the momentum normal to
the sphere,p', must point inward(the modulus ofp' is
fixed by energy conservation). The incoming state then
evolves inside the scattering region, along a trajectory given
by Hamilton equations. It eventually intersectsS again at the
exit pointsq8 ,pi8d and escapes. Hence, any scattering process
can be essentially viewed as the first return map ofS [5],

S:S ° S, sq,pid°
S

sq8,pi8d. s2d

As a consequence of the Poincaré-Cartan theorem, this map
is volume preserving[6].

The structure of the classical scattering problem has a
clear quantum mechanical counterpart. The quantum analog
of the classical Poincaré surface is the Hilbert spaceHS

associated withS. The quantum scatteringS matrix is a
linear operator ofHS, mapping incoming states into outgo-
ing ones. The Poincaré map(2) is the classical limit ofS.
Conversely, the scattering matrixS can be thought of as the
quantization ofS [7]. The unitarity of S is the quantum
counterpart of the classical volume conservation[8,9].

This parallel between classical and quantum scattering
processes serves to facilitate the determination of some
quantum-classical correspondences. For instance, and very
useful for what follows, it becomes clear that the classical
analog of an average over “channels”(a complete basis set of
HS) is an average overS weighted by its Liouville measure.

Let us now discuss in detail a very simple scattering sys-
tem: a two-dimensional billiard with an attached pipe. The
case of a smooth cavity with several(smooth) pipes in two or
three dimensions, or even the scattering of asymptotically
free particles by a smooth potential, is conceptually equiva-
lent to the two-dimensional billiard with a single pipe, and
will be discussed later.

The physical process we analyze is the following. A clas-
sical particle propagates along the pipe and eventually ar-
rives at the billiard, where it elastically bouncesn times at
the walls before escaping(see Fig. 1). A Poincaré sectionS,
transverse to the pipe, separates the scattering region(inte-
rior, billiard region, interaction region) from the asymptotic
region(exterior, pipe). We seek the average number of times
knl a particle bounces before escaping, or the average dwell
time ktl of a particle inside the billiard. As already men-
tioned, the appropriate measure for averaging gives equal
weights to all points onS having the same energyE.

In what follows we show that the answers to these ques-
tions are given by very simple ratios between phase space
volumes. Then we argue that our results are also applicable
to more general geometries.

A. Birkhoff maps

Let us consider a Birkhoff section taken along the billiard
walls (see Fig. 1). The coordinatessq,pd, where q is the
particle position on the billiard boundary andp is its conju-
gate momentum, entirely characterize the particle phase

spaceG. The dynamics inside the scattering region is given
by the Birkhoff (or boundary) mapT that propagates a par-
ticle between successive bounces, i.e., from a phase space
point sq,pdPG to the one where the next bounce takes place.

Now we “close” the billiard by adding a straight segment
normal to the pipe axis[5]. The Poincaré section associated
with this segment,S, closes the Birkhoff sectionG. Thus, the
scattering process can be identified with the first-recurrence
map to S, now considered as a part ofG; the dwell time
becomes the first-return time toS. Figure 1 shows the
boundary phase spaceG, namely, a rectangle of length equal
to the perimeter of the closed billiard and height 2pmax, with
pmax

2 =2mE, wherem is the particle mass andE its energy.
The shaded vertical strip corresponds to the closureS, and is
denoted byC. The inclusion of more pipes to the billiard is
accounted for by adding the corresponding(disjoint) vertical
stripes. This construction can easily be extended to higher
dimensions.

We recall thatn is the return time measured in units of
bounces against the billiard walls. Its average is

knl =
on=1

` nmsCnd
msCd

, s3d

whereCn,C is the subset of initial conditions that first re-
turn to C after n iterations of the boundary mapT, and m
refers to the volume measure inG. Using measure-
preservation arguments, it is not difficult to show that
on=1

` nmsCnd=msøn=1
` T nCd [10]. Hence, Eq.(3) becomes

FIG. 1. (Top) Billiard with attached pipe. The Poincaré section
S (dashed line) defines an auxiliary closed billiard.(Bottom)
Boundary phase spaceG of the scattering billiard. The phase space
coordinates areq, the position along the boundary, andp, its con-
jugate momentum. The shaded rectangleC corresponds to the clo-
sureS.
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knl =
msø n=1

` TnCd
msCd

, s4d

which now expresses the time delay as a quotient of two
measures: The denominator is the measure of the closure; the
numerator represents the measure of the inner phase space
that is explored by the ensemble of scattering trajectories.
For an ergodic dynamics the setøn=1

` T nC clearly coincides
with the full phase spaceG. Remarkably, even nonergodic
Birkhoff’s maps very often satisfy theweak ergodicitycon-
dition

ø
n=1

`

T nC ; G8 = G. s5d

For instance, it is simple to verify that the circle billiard
[5,11], an archetype of integrable dynamics, satisfies Eq.(5)
for any straight closureS.

As a result, for weakly ergodic billiards we find thatknl
=msGd /msCd. The weak-ergodicity condition is not satisfied
by systems containing stable islands that cannot be reached
from the outside, such as, for instance, the cosine-shaped
billiard [12]. In these cases we replaceG by G8, the phase
space that is effectively explored by the scattering orbits, to
write

knl =
msG8d
msCd

. s6d

The expression above shows that for both ergodic and non-
ergodic systemsknl is finite. Thus, the probability of first
returning aftern iterations,

Psnd =
msCnd
msCd

, s7d

must decay faster than 1/n2. In some cases numerical simu-
lations may suggest a divergent average return time. Note,
however, that the true asymptotic decay may settle only after
very long times[13].

B. Continuous time

The real, continuous, time-delay problem is addressed in
analogy with the simple one presented above. To make a link
between continuous dynamics and maps we invoke the stro-
boscopic mapTDt, i.e., a discretization of the continuous evo-
lution into time steps of lengthDt. The continuum limit is
obtained by makingDt→0. The mapTDt acts on the full
phase space of the scattering system, namely, a four-
dimensional space for a planar billiard.

In order to adapt Eq.(6) to the present context, we note
that the set of incoming statesC has zero measure when
thought of as a subset of the full phase space: It has to be
substituted by a properly defined set having finite measure,
which we call C̄. The simplest way of choosingC̄ is by
letting C acquire two extra dimensions: in the direction nor-
mal to the energy surface, and in the direction parallel to the
phase space flow. The corresponding additional canonical co-
ordinates are the energyE and the timet measured along the

trajectories starting at the sectionS. The variablesE and t,
together with the coordinates onS, form a local canonical
set. WhenC grows in “thicknesses” byDE andDt, we have
the simple relation between measures

msC̄d = msCdDEDt. s8d

The dwell time is then given by[14]

ktl = lim
Dt→0

Dt
msG8d

msC̄d
, s9d

where

G8 = ø
n=1

`

sTDtdnC̄. s10d

The quantityG8 represents the inner phase space for the con-
tinuous dynamics that can be accessed from outside. It has an
energy thicknessDE.

By construction, the setC̄ has the important property that
all its points enter the scattering region after one time step
Dt, namely,

msC̄ ù TDtC̄d = 0. s11d

This avoids the problem of having to subtract spurious con-
tributions to the dwell time arising from nonscattering orbits
[14].

Let us now express Eq.(9) in terms of more appealing
quantities. DefineV to be the phase space volume contained
by the energy shellE within the scattering region(as before,
primes will indicate “accessible from outside”). Then

msG8d =
]V8

]E
DE. s12d

We recall thatmsCd is the phase space volume contained by
the energy shellE within the sectionS. We now switch to a
more standard notation and, from now on, we call itVS.
Gathering everything and substituting into Eq.(9) we arrive
at

ktl =
1

VS

]V8

]E
. s13d

This remarkable formula is exact and holds irrespective of
the dynamics being chaotic, regular, or mixed. After making
the proper identifications, Eq.(13) can also be applied to
billiard systems in three(or higher) dimensions.

For the sake of illustration, let us, for instance, use Eq.
(13) to calculate the mean time between collisions for a
closed billiard. In this case, we have to chooseS as the phase
space corresponding to the full boundaryL. The weak ergod-
icity condition is obviously satisfied and the average bounce
time readstb=s]V /]Ed /VL for any billiard, truly ergodic or
not. For the two-dimensional case,VL=2mvL and V
=pp2A=2pmEA (v=velocity, L=perimeter, A=area).
Then we arrive at the well-known resulttb=pA /vL, as heu-
ristically shown in Ref.[15] and proven in Ref.[16].
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C. Smooth systems

The extension of our findings to smooth systems is imme-
diate. The boundary that so far defined the system billiard-
plus-pipe now is thought of as the level curve of a smooth
potential. The motion in the waveguide is free in the longi-
tudinal directionsx̂d. In the directions transverse to the wave-
guidesŷd the dynamics is governed by a smooth Hamiltonian
H'sy,pyd.

The analysis of Sec. II B applies equally well to this case.
Thus, the formula for the dwell time is also Eq.(13), with the
following definitions.VS is the measure of the phase space
in the Poincaré section lying inside the energy shellH'=E,

VS = E
H'øE

dy dpy. s14d

V is the volume of the inner phase space with energy less
than E. Assuming that the scatterer lies in the regionx.0,
we have

V = E
HøE and x.0

dx dy dpx dpy. s15d

The case of a particle scattered off a smooth potential in
three dimensions can be accounted for by enclosing the scat-
terer with a large enough spherical shell(the Poincaré sec-
tion S). Then one defines the delay time as the(average)
return time toS minus the return time when there is no
potential. Both return times are special instances of Eq.(13),
the free-flight time being just the average bounce time of a
spherical billiard.

III. AVERAGE WIGNER TIME DELAY

The Wigner time delaytWsEd, given by Eq.(1), fluctuates
as a function of the energy. Large time delays are due to
resonant scattering, whereas off-resonance scattering corre-
sponds to direct processes that spend short times in the in-
teraction region. This picture becomes particularly clear in
the regime of isolated resonances: Long time delays occur at
narrow energy windows around each resonance; in the re-
maining energy interval scattering processes are fast(direct).
The important energy scale that emerges from this picture is
the mean resonance spacing. When the resonances are over-
lapping, the separation of time scales is less clear, and fluc-
tuations are much smaller[17].

By averaging the Wigner time delay over an energy win-
dow DE containing many resonances, fast and slow pro-
cesses concur to give a very simple expression:

ktWsEdl =
h

N
rsEd, s16d

wherersEd is the mean resonance density(due to the scat-
tering region). Hence,ktWl basically just counts the number
of resonances within the energy intervalDE. Equation(16)
can be derived in various ways, for instance, using the
S-matrix pole structure[17].

In order to relatektWl to the classical results, we take the
semiclassical limit of Eq.(16). We first use the Weyl formula
to express the mean resonance densityrsEd. For that pur-
pose, we consider the corresponding closed system(scatter-
ing region closed byS), to write

r̃sEd =
1

hd

]V

]E
, s17d

whered is the dimension of the system. The wide tilde is
used to indicate that the semiclassical limit was taken. By the
same token, the number of states in the pipes is given by

Ñ =
VS

hd−1 . s18d

We then arrive at

kt̃Wl =
1

VS

]V

]E
. s19d

Remarkably, as in the classical case, the average Wigner time
delay is a purely geometric quantity, and does not capture
dynamical features.

IV. CONCLUSIONS

The most striking result of our semiclassical analysis is
that the Wigner time delay of Eq.(19) is not in correspon-
dence with the classical dwell time of Eq.(13). The corre-
spondence holds only in the case of weak ergodicity, where
the phase space volumeV8 equalsV. The two quantities are
different in the more general situation of a mixed phase
space.

This result can be interpreted as follows. In general,
mixed systems have phase space domains in the interaction
region which are not classically accessible from the outside.
These regions, if larger thanhd, will support quantum states.
Such states correspond to resonances, which can be very
thin, depending on the height of the dynamical tunneling
barriers. As we showed, they contribute toktWl with the
same weight as other quantum states predominantly localized
in classically accessible regions.

In a broader picture, we speculate that the lack of
classical-quantum correspondence for the dwell time is an-
other manifestation of the noncommutativity between the
long time limit st→`d and the semiclassical limits"→0d.
Tunneling into(or out from) localized states at islands of the
mixed phase space takes a very large time scale to occur, and
is absent in the classical limit of"=0.

We conclude by stressing that our results are rigorous and
do not depend on the interpretations presented here.
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